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Abstract: Drug designing is a crucial step in the exploration of novel drugs which requires potent methodologies. One of such 
methodologies is Quantitative Structure Activity Relationship (QSAR) which is a widely used statistical tool that correlates the 
structure of a molecule to a biological activity as a function of molecular descriptors, thereby, playing an essential role in the drug 
designing. QSAR utilizes Density Functional Theory (DFT) based chemical descriptors for this purpose. The selection of such 
significant molecular descriptors from various available descriptors is the foremost challenge in a QSAR as structural descriptors 
are representative of the molecular characteristics accountable for the relevant activity. Recently, new QSAR approaches have 
been introduced which further enhance the study of the activities. Further, the constructed QSAR models also need to be tested 
and validated for their efficiency and practical usage. As the QSAR models are structure specific, they may not be universally 
applicable. However, because of their high precision and efficacy, they have a promising future in the world of drug design. This 
review briefly summarizes the role of descriptor based QSAR in drug design in conjunction with existing QSAR approaches and 
also the utility as well as constraints of this approach in drug design. 
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1. Introduction 

Drug designing plays a critical role in medicinal chemistry 
when it is performed with planning and forethought. As per 
the basic hypothesis of the rational drug design approach, the 
valuable effects of drugs are generated because of the 
molecular recognition as well as binding of ligands to the 
active site of explicit targets, like nucleic acids, receptors and 
enzymes. Inhibition or promotion of signal transduction can 
be the consequence of binding for enzymatic activity or 
molecular transport. Conventionally, medicinal chemistry 
employed small chemical compounds which already existed 
in nature and their activity was revealed through serendipity 
and observation. Exploitation of animal models, designed for 
human diseases, for methodical exploration of compounds 
possessing biological activity was a new characterization in 
the history of drug design. Subsequently with the 

introduction of computational chemistry along with advances 
in molecular biology, superior testing schemes and high 
output screening became accessible. In tandem, the variety 
and sophistication of the systems also amplified. 

The progressive endeavour of the majority of organic, 
inorganic, organometallic, and pharmaceutical chemists is the 
application of theoretical techniques for determining the 
physicochemical and molecular properties of different drug 
compounds. Quantitative structure activity relationships 
(QSARs) as well as Quantitative structure property 
relationships (QSPRs) are indisputably of immense 
significance in present chemistry and biochemistry. The 
primary predicament in chemistry and biochemistry is the 
relationship of biological or chemical activity with molecular 
structure and its properties, that is, QSAR (quantitative 
structure activity relationship), or SAR (structure activity 
relationship), or QSPR (quantitative structure property 
relationship). QSAR has emerged as a method that is both 
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comprehensive as well as competent to be utilized for 
pharmaceutical problems. QSAR exploits Density functional 
theory (DFT) based descriptors for predicting the relationship 
between the molecular properties of the target compound and 
its various biological phenomena [1]. DFT is a well-accepted 
method for precisely describing biologically important 
molecular systems at an effective computational cost. These 
molecular descriptors are universal variables utilized for 
QSAR-based activity prediction modeling [2]. 

The details determined by the descriptors rely on the 
dimensionality of the molecule in addition to the algorithm 
employed in computing the descriptors [3]. One-dimensional 
descriptors refer to the quantities which encode 
chemico-physical properties and constitutional parameters. 
These descriptors are not sensitive to molecular topology and 
are liable to be identical for different compounds. 
Consequently, they are frequently utilized jointly with other 
descriptors. For chemical space description, often 
two-dimensional descriptors employed. These kinds of 
descriptors aren’t only molecular conformation independent 
but graph invariant as well. Three-dimensional descriptors 
offer a rigorous description of molecular structures. These 
entail conformational probing and can classify isomers, 
although the process is computationally expensive. 
Four-dimensional descriptors resemble three-dimensional 
descriptors and assess several structural conformations at the 
same time. Another category of molecular descriptors 
comprises of fingerprints [3–5]. Generally used fingerprints 
are the extended-connectivity fingerprints (ECFP) [6], 
PubChem [7] and Molecular ACCess System (MACCS) [8] 
substructure fingerprints. 

The QSAR was initially detected by Hammett in the 1930s 
and developed by Hansch and Fujita [9] later in the mid-1960s. 
A number of QSAR methodologies were proposed by 
numerous authors following 70 years advancement in the field 
like 2DQSAR [9–11], 3DQSAR which corresponds to 
CoMSIA [12, 13] and CoMFA [14, 15] in addition to 
4DQSAR [16] and HQSAR (Hologram quantitative 
structure-activity relationship) [17]. Until now QSAR is a well 
recognized method and has been used more or less in every 
branch of chemistry, including medicinal chemistry [18–20], 
agricultural chemistry [9, 18], environmental chemistry [18, 
21] and toxicology [22]. Particularly in pharmaceutical 
chemistry QSAR has turned out to be a model means for drug 
innovation and is an essential part of all industrial drug design 
software packages. In fact, QSAR is one of the most 
commonly used tools in drug design for more than 50 years. 
QSAR technique relies on the physicochemical and structural 
information of molecules and thus can offer further structural 
and physical insights. 

The idea of QSAR is to alter pursuit for compounds with 
anticipated properties via chemical insight and practice into a 
computerized and mathematically quantified model. As soon 
as a relationship amidst structure and activity is established, a 
number of compounds, in addition to those which are not 
synthesized so far, can be effortlessly displayed on the 
computer to facilitate selection of structures with required 

properties. Consequently, it becomes possible to opt for 
potential compounds to synthesize and analyze in the 
laboratory. Hence, the QSAR technique conserves resources 
and hastens the course of development of novel molecules for 
use as drugs, additives, materials, or various other purposes. 
Although it is complicated to determine efficacious structure 
activity correlations, the recent rampant growth in the quantity 
of papers concerning with QSAR analysis evidently reveals 
the fast advancement in this realm. To achieve an effective and 
valuable correlation, it is essential that suitable descriptors are 
utilized, regardless of them being theoretical, empirical, 
semi-empirical or derived from an easily accessible 
experimental structural characteristics. 

Numerous descriptors reveal elementary molecular 
properties and therefore can offer an understanding of the 
physicochemical character of the activity under concern. 
Current developments in computational hardware and the 
progress in the construction of powerful algorithms have 
supported the custom progress of molecular quantum 
mechanical computations. In a reasonably small 
computational timespan, latest semi-empirical methodologies 
deliver practical quantum-chemical molecular quantities. 
Therefore, quantum chemical estimations are an enticing 
resource of new molecular descriptors, theoretically which 
suggest every single electronic and geometric property of 
molecules and corresponding interactions. In fact, a lot of 
latest QSAR studies have engaged quantum chemical 
descriptors solely or in unification with other common 
descriptors. Rather than empirical methods, quantum 
chemistry presents a more precise and exhaustive account of 
electronic effects [23]. By directly deriving electronic 
descriptors from the molecular wave function, quantum 
chemical methods can be employed to QSARs. In lots of cases 
it has been known that inaccuracy owing to the approximate 
nature of quantum-chemical procedure and ignorance of 
solvation effects can be transferred to a great extent within 
structurally associated series. As a result, despite the fact that 
the absolute values of computed descriptors are not directly 
related, the relative values can still be significant [24]. In 
addition, on the basis of atoms or groups, molecular wave 
function derived electronic descriptors can also be divided, 
permitting the explanation of different molecular areas 
individually. Largely, work utilizing quantum chemical 
descriptors has been done in the area of QSAR rather than 
QSPR, i.e. correlation of the descriptors with biological 
activities such as hallucinogenic activity, enzyme inhibition 
efficiency, etc. have been established [25–28]. This happened 
to a certain extent since the chase for quantitative relationships 
with chemical structure, in the past, begun with the foundation 
of scheme for theoretical drug design. Quantum-chemical 
descriptors also correlate different physical properties of 
molecules with their reactivity [29, 30]. The current review 
article scrutinizes the relevance of quantum chemical 
descriptors in the progress of QSAR/QSPR concerning 
chemical, biochemical, physical, and pharmacological 
properties of compounds. 
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2. Quantum Chemical Descriptors 

For an entire molecule as well as for molecular components 
and substituents, reactivity, shape and binding properties are 
characterized by a large number of molecular and local 
quantities which are defined via quantum chemical methods. 
The most often used quantum-chemistry based descriptors are 
atomic charges, HOMO and LUMO energies, orbital electron 
densities, superdelocalizabilities, atom-atom polarizabilities, 
molecular polarizabilities, dipole moments, polarity indices, 
electronegativities, global electrophilicities, global 
nucleophilicities and lately global compressibilities [1, 31–39]. 
As a huge amount of precise physical data is encrypted in a 
number of theoretical descriptors, two key benefits appear due 
to their employment in the design of a training batch in a QSAR 
analysis. First, on grounds of their molecular structure, various 
chemical species along with their different parts and 
substituents can be directly identified. Second, the suggested 
mechanism of action can be directly described with respect to 
the chemical reactivity of the chemical species under analysis 
[40]. The obtained QSAR models, as a result, comprise of the 
information which is related to the nature of the intermolecular 
forces of compounds under consideration which helps in 
ascertaining their biological and/or other activity. However, 
quantum-chemically derived descriptors have some 
characteristics in common with experimentally measured 
quantities, but basically they are different from each other. 
There exists no statistical error in calculations done quantum 
chemically which is unlikely in the case of experimental 
measurements. Though there is innate error linked with the 
suppositions necessary to assist the computations. For the most 
part only the direction of the error is recognized and not the 
magnitude [41]. The computational error is believed to be 
roughly constant all through the series of interrelated 
compounds while applying quantum chemical descriptors. A 
primary limitation of quantum chemistry based descriptors is 
the deficiency to directly illustrate bulk effects [42]. 

Ligand-based drug design (LBDD) approach is a strategy 
which does not call for the biological target structure [43]. 
QSAR is a LBDD scheme and it has been extensively 
exploited in drug design, primarily intended to anticipate the 
biological activity of a compound set contrary to a definite 
target to adjust the binding affinity [44, 45]. QSAR models 
offer exact estimations of measured endpoints rather than an 
independent classification of biological activity. These 
quantitative strategies have also been exploited in other 
projects, for instance toxicity profile, optimization of 
pharmacokinetics [46–48] and virtual screening [49–52]. 
Many significant QSAR studies are present in literature, 
which contain explanation of potent computational techniques 
and algorithms [53, 54], validation procedures [55], practical 
uses [56, 57] in addition to different issues and concerns and 
how they have been dealt with [58-63]. 

The foremost challenge in the drug design, regardless the 
extensive use of QSAR approaches, is the realization of such 
models because it considerably relies on the accessibility of an 
enormous amount of data, which prevails as a challenge in 

drug design. This glitch is largely associated with the 
complication involving the quality of accumulated public data, 
including vague illustration of chemical structures and 
imprecise activity details [64]. Moreover, the nature of 
miscellaneous experimental procedures can generally head 
towards the data belonging to various probability distributions, 
which makes the application of these methods impractical. 
Mostly the relationship between chemical variations of two 
data sets is tough to be studied as biological activities of those 
sets are calculated under dissimilar experimental settings [65]. 
As stated in a review on quantitative structure activity 
relationship, in 2014, the transfer of one QSAR models to 
another is one of the issues in QSAR modeling [66], as the 
conventional schemes have been characteristically designed 
for each target property separately. Apart from this, the 
quantum chemical descriptors cannot theoretically provide an 
explanation for temperature and entropic effects since a 
quantum chemical computation is carried out for a single 
structure at minimum energy. As a result, it relates to the 
hypothetical physical condition of the gas at infinitely low 
pressure and temperature (0 K), in addition to ignoring the 
zero-point vibrations of the molecule. For a specified property 
or course of action, when such factors are intervening, 
quantum-chemical descriptors are inadequate for their 
explanation and if any correlation is achieved using them then 
it can be considered as accidental. Nevertheless, nearly every 
standard quantum-chemical application packages such as 
AMPAC 9.2, Gaussian 16, MOPAC 2016 have an option to 
determine the rotational, vibrational, and translational 
partition functions of the molecule at the specified 
temperature and their relevant contributions to the 
thermodynamic functions such as molecular entropy, 
molecular enthalpy and so on. 

3. Descriptor Selection and QSAR Model 

Development 

A model drug candidate is required possess definite 
properties, i.e., chemical properties, solubility, enzymatic 
stability, permeation across biological membranes, low 
clearance by the liver or kidney, potency, and safety. Out of 
numerous available descriptors, selection of the fundamental 
molecular descriptors is the most important challenge in a 
QSAR. Hence, to understand the QSAR model, to decrease 
over-fitting, accelerate training and to enhance the overall 
model predictability, choice of appropriate and interpretable 
descriptors to set up QSAR models is an extremely crucial 
step. Nevertheless, this is a challenging and complicated step 
as well. The principal supposition of QSAR methodology is 
that the discrepancy observed in the biological activity is 
correlated to molecular structure [67, 68]. Thus, using 
mathematical expression, biological activity of corresponding 
molecular frameworks can be expressed as a function of 
definite structural molecular characteristics, that is, 
descriptors, through regression analysis to assess the relative 
significance of those characteristics responsible for the 
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biological effect. The traditional QSAR methodologies [69, 70] 
involve molecular descriptors with global molecular 
properties of ligands. QSAR models based on distinct and 
suitable descriptors are used from linear or multilinear 
regression analysis (MLR) to present complex multivariate 
analysis [71–79]. However, non-linear techniques should be 
preferred over others as a modeling approach due to the 
sophistication of drug metabolism. 

4. QSAR Approaches 

The QSAR model construction is characterized by having 
specific schemes for computing and choosing the molecular 
descriptors and explicit statistical procedures for formulating 
the resulting models. Characterization of the QSAR group is 
done by designing the model system in the lack of a definite 
structure intended for the molecular target. Reformulating the 
conventional QSAR methods with refined mathematical tools 
and well-designed theoretical models, recently, three modern 
QSAR methods were introduced [80, 81]. First one being 
FB-QSAR (Fragment-Based two dimensional QSAR), where 
as per the substitute being examined, the molecular structures 
in a series of drug candidates are segregated into a number of 
fragments. The physicochemical characteristics of molecular 
fragments are compared with the bioactivities of drug 
candidates with the help of two sets of coefficients out of 
which one is for the molecular fragments while the other for 
the physicochemical characteristics. The second type is 
known as MF-3D-QSAR (Multiple Field Three Dimensional 
QSAR). In this QSAR type, additional molecular potential 
field (thermodynamic and non thermodynamic) is 
incorporated in CoMFA [15] (Comparative Molecular Field 
Analysis) using two sets of coefficients, one for the Cartesian 
three dimensional space position and the other for potential 
field. CoMFA (Comparative Molecular Fields Analysis) [14] 
was formulated in 1988 which is a milestone in QSAR 
because it was for the first time that 3D structure of the ligands 
was used to describe structure-activity relationships. 
Interaction of chemical probes with ligands is plotted on a 
plane or lattice encompassing a set of compounds in CoMFA 
which is superimposed in 3D space. This plane or lattice 
corresponds to a substitute of the binding site of the real 
biological receptor. The third category includes AABPP 
(Amino Acid-Based Peptide or Protein Prediction). In this, the 
QSAR procedure is employed for the peptide and protein 
activity evaluation. Using two sets of coefficients, one for the 
physicochemical properties of amino acids whilst the other for 
the residues in the peptide chain, the bioactivities of peptides 
and proteins are linked with the physicochemical properties of 
each or some amino acid residues in the chain. All of the three 
QSAR approaches mentioned above are characterized by a set 
of three dimensional concurrent equations that enclose two 
sets of undetermined coefficients. In the meantime, an 
iterative double least square (IDLS) scheme is developed 
alternatively and persistently for determining the two sets of 
coefficients in a research dataset. In relation to traditional 
QSAR approaches, the recent QSAR methodologies can 

amazingly augment the predictive power of QSAR and offer 
further information on the molecular structure. 

5. Conclusions 

This review presents the advancement of Quantitative 
Structure Activity Relationship (QSAR) in the field of drug 
designing using quantum chemically derived molecular 
descriptors. Through utilizing QSAR correlations based on 
quantum chemical descriptors, one can develop hypothetical 
structures which either don’t exist or have never been 
synthesized. The review also draws attention towards some 
facets which should be stressed while utilizing QSAR 
approach for drug designing like the diversity and depiction of 
the data sets, i.e., training and test sets, variable assortment 
and promising application of the new statistical schemes. 
Although, it should be noted that these descriptors are not 
fully universal and, may have severe downsides as per the 
nature of the chemical processes or structures involved. New 
QSAR approaches have also been introduced recently which 
can remarkably enhance the predictive power of QSAR and 
present supplementary information related to molecular 
structure. Although it is apparent that quantum chemical based 
descriptors have immense applicability and potentiality in 
QSAR studies in the field of drug design given that their usage 
is crucially scrutinized and validated for a certain property or 
phenomenon, there are still a lot of elementary aspects to be 
further probed with QSAR methods. Therefore, it is 
perceptible that existing and future advances will continue to 
facilitate and broaden the use of descriptor based QSAR 
technique in the studies of novel drugs candidates as an 
indispensable part of drug design, and it is probable to remain 
as such in the near future. 
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